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a horizontal layer heated from below had been previously investigated [7]. The trans- 
verse motion in a horizontal layer also leads to increased stability. The critical Rayleigh 
numbers increase monotonically with increasing Peclet number ; the closing of levels is 

in this case absent. There is thus a similarity with spatial perturbations in a vertical 
layer. However, when comparing the results of g] with those derived here, it should be 
stressed that there is no complete analogy between the two problems. In the case of the 

horizontal layer the transverse motion is directed across the unperturbed isotherms result- 

ing in the decrease of the unstably snratified layer thickness with increasing velocity of 

the transverse motion. The transverse motion in a vertical layer occurs, on the other 
hand, along the isotherms without distorting the temperature distribution equilibrium, 
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The dynamic equations of motion of the phases of a monodisperse system are formulated 

in the approximation of interpenetrating interacting continua, The energy transfer equa- 
tions of the pulsations of the phases in various directions are derived. These serve to 
close the above system of dynamic equations. 

We investigated the non-Newtonian hydromechanics of disperse systems in [l] and 
extended it to gas suspensions in r2.31. The approach used in [l- 33 is to some extent 
phenomenological, in that the random pulsations of the phases of a disperse system are 
dealt with on the basis of the equations of motion of the phases postulated a p r i or i 
as for continua, whereas strictly speaking such equations can only be posited without 

contradiction after such analysis. we now propose to eliminate the contradiction by 
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deriving the equations of phase motion in the continuum approximation in a very natu- 
ral way. 

1. The model and the dynamic equation,. Let us consider a system of 
particles of radius a and density ds suspended in a medium of density dl and viscosity 
pO. .We shall specify the state of this system by means of the ensemble-average values 

of the volume concentration (p), the velocity of the dispersed phase (w), the velocity 
of the fluid medium (v)., and the pressure in the medium (p). Fulfilment of the ergo- 
die hypothesis (which we assume) means that these average values, referred to from now 

on as the “dynamic variables”, coincide with the quantities obtained by averaging the 

indicated quantities over volume of a mixture containing N >> 1 particles and then 
taking the limit as N --f CC. The instantaneous local values of the velocity w of a sin- 
gle particle, of the average velocity v of the fluid in its specific volume o, of the aver- 
age pressurep in this volume. and of the quantity p = ci,, / o, where o,, = 4/ana3 
(which is the local value of the volume concentration of the disperse system) differ from 

the above average values by certain random addends denoted by primes. These random 
quantities represent the pulsations of the system phases, which we refer to from now on 
as “quasi-turbulent” pulsations. The specific volume of such a particle can therefore be 

taken (as in [l-3]) as the smallest “cell” for which determination of the local values 
of the parameters characterizing the fluid phase is still meaningful. The equation of 
motion of a single particle can be written as 

dw 
mdt =mg+F+&, F = Fp + F, + FE + FB, m = &so (1.1) 

Here g is the acceleration of the external mass field, F, is the random force associ- 
ated with direct interactions (“collisions”) of an isolated particle with its neighbors, and 

F is the force of interaction of a particle with the supporting fluid stream. The latter 
force consists of the following components: the force F P due to the pressure gradient in 
the fluid, the force F,of viscous interaction with the stream, the force FE due to the 

excess inertia of the fluid during accelerated relative motion of a particle (i. e. to the 

additional mass effects), and the Basset force Fg.These forces are given by the expres- 
sions 

F, = 3P 
-Go,,, F, = 4ooPh’ (P) u, FE = Wo 2 , u=v-w 

(I.21 

where p, p and v are defined, as noted above, within the specific volume of a given 
particle. E is the additional mass factor, y’ is a coefficient of the order of unity (for 
simplicity we assume that E and y’can depend on (p) but not on p; as (p) -+ c) 

we have E = 1/Z, y’ = I), and K (p) is a function which allows for the deviation of 
the force F, from the Stokes force for constrained flow past the particle (the quantity 

K (p) can, of course, depend on the dynamic variables). 
Let us introduce the particle velocity distribution function f (w; r, t) normed to the 

average countable particle concentration n (r, t); let us also introduce the nominal dis- 

tribution functions f (v; P, t 1 w), f (p; r, t ( v, w) and f (p; r, t 1 ps V, W) normed 
to unity. The quantity f (v; r, G 1 W) dv, for example, represents the probability with 
which the velocity of the liquid phase in the specific volume of a particle moving at 
the velocity w will lie in the range (v, v -+ dv). The operation of averaging over the 
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ensemble is defined as follows: 

(0) =&)s cpf(E r, tlf? v, w)f(fX r, t 1 v, w)f(v; r, t/l w)f (w; r, t)dA 

dA - dpdpdvdw 
Clearly, we can assume in the general case that the above nominal distribution func- 

tions constitute certain functionals of the unary function f (w; r, t) and of the subse- 
quent multicomponent distribution functions. The form of these functionals is not known. 

Since the force F of (1.1) depends on p, p and v , the kinetic equation for f (w; r, t) 

must also contain the above multicomponent distribution functions, although it is impos- 
sible to write out a chain of kinetic equations for all such functions ( *). However, if we 
average over the nominal distributions directly, then we can use the standard procedure 
to obtain the kinetic equation for f (w; r, t) from the Liouville and Hamilton equations. 
The resulting kinetic equation is of the form 

g+ -D+)$,-($*wy: (g*(w))= (qi 
D 

Dt= at a + (w) & , a *b = 1) a& 11, A : B = AijBji (1.3) 

F* = SFf(p; r, tl p,v, w) f (p; 1, t I v, w) f (vi I, t I w) dPdP dv 

The term in the right side of (1.3) describes the variation of f (w; r, t) as a result of 
collisions between particles. The number of particles in the system does not depend on 
the collisions. This leads us to assume that the total momentum and the total energy of 
the colliding particles are invariant under collisions (the meaning of this assumption is 
self-evident). We then use the standard procedure [S] to obtain from (1.3) the equations 
of conservation of the mass and momentum of the dispersed phase in the continuum ap- 

proximation, namely 
* f (p) 9 = 0, (p) 5 no, 

&(p)%$ z -- a::) -k da (pig + (P> (G, + G, + G; + GB) (1.4) 

P@) = ds (p) (W’L w’), a,{$, G,, GE, GB) = i<F,, F,, Fe, FB)) 

*) An attempt to deal with these difficulties in such a way as to break off the chain of 
kinetic equations at the equation for the unary distribution function was made in [4], 
where the presence of the force F was allowed for by introducing a term describing dif- 

fusion in the velocity space into the equation. This was essentially equivalent to assum- 
ing the random force F’ = F - (F) to be Markovian, as in the theory of Brownian mo- 
tion. Such an assumption is invalid in our problem, since the characteristic time T of 
the variation of F’ coincides with the time of significant alteration of the characteris- 
tics of the quasiturbulent motion. If, despite this, we decide to assume a Markovian F’ 
as an approximation, i. e. if we limit ourselves to the consideration of processes whose 
duration is at all events larger than T, then the term (df / dt)+ in the kinetic equation 
cannot, in principle, be written in standard Boltzmann form as in [4], since the charac- 
teristic time of system relaxation due to collisions between particles is of the same order 
as the time of travel z of a particle between successive collisions, and since it is usually 

the case that r < T . 
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A similar equation can also be readily derived for the total pulsation energy of the 

particles ; this equation is also of standard form [S]. However, the quasi-turbulence of 

disperse systems is usually essentially anisotropic, which focuses interest on the energies 
of the quasi-turbulent motions in various directions. The forms of the equations for these 
quantities is considered in more detail in Sect.4 of the present paper. 

The second equation of (1.4) can also be obtained from equation of particle motion 

(1.1). In fact, let us formally set &+L+w& 

then set p = <p> i- P’ in (1. l), etc., and finally sum the resulting equations for N > 1 
particles present in the volume V. This yields 

Vd-2 (p> D* + m 
N 

L/r , 
k=l 

w’(k) T) <w> + ; $, w'(k)] + 
k=l 

a 
+m3i- 

5 ,'(k),,'(k) _ m 5 W’(k) F= V <p> dzg + 

k=l k=l 

N 

+V<P)G+ 21 (F (k) - aoG + Fik’), a& = (F) 

k=l 

As N -+ CC the second term in the left side and the last term in the right side of this 
equation clearly vanish, so that we can divide this equation by V and take the limit as 

N + 00 to obtain 
D(w) _ da (P) Dt - - ~+‘+‘~)+d,(p>g+~p)G 

Comparing this equation with (1.4), we find that it is necessarily the case that 
(w’ (VW’)) = 0. We also assume that (v’ (VW’)) = 0 in our computation of GEbelow. 

In order to particularize the second equation of (1.4) we must find explicit expressions 
for the quantities G P, G,, Gc and Gn.Making use of relations (1.2). we obtain the fol- 
lowing expressions accurate to within second-order terms in the quasi-turbulent quanti- 
ties : 

G, = pd, (K (u> + $$ (p’u’> + ; d$!$ (u)(@2>) 
F,’ = 5,P d, (Ku’ + $$ (u> p’;) , K = A- C(P)) 

G&@-$+$&), F~'=5dla,j~+(w'~)(U)) 

--oo 

(4.5) 

PC = d1(w’*u’) 

For convenience, we shall henceforth take the average specific volume of a single 
particle in the system (a) = a,( p)-l as our unit volume. The equations of conser- 
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vation of the mass and momentum of the fluid phase can be written as 

d,(l--p)(~+‘~~~=-~+~+d,(l-p)g-F, fi=/.~J 
(1 .G) 

Here /.r is the effective viscosity of the fluid flowing through the lattice relative to 
the stationary particles. We assume from now on that /J can depend on (p) but not on 

P. Substituting p = { p) + p’ into (1.6), etc., and then averaging, we obtain the fol- 

lowing equations (accurate to within second-order terms) describing the average motion 
of the fluid in the disperse system: 

(~+(v>~)(p)-(l-(p))~-~=o, q=-(p’v’) 

4 [$ ((1 - (P>) <v>) + g ((I - (p>) <v> * w] -I- 4 g = 

ap(') a <P) =-- 
ar --&-+ v $- d, (I- (p)) g - G 

c= &[(I-(p))(v’*r’) +q* <v) +(v> *q] (4.7) 

The force G appearing in this expression is the sum of the forces G,, G,, GE and G, 
of (1.5). Together with (1.4), Eqs. (1.7) constitute the system of dynamic equations 

describing the average motion of the disperse system. These equations differ markedly 
from the equations of average motion usually postulated in the phenomenological theory 
of multicomponent media (e.g. see [6,7]. In the first place, an essentially new term 
appears in the equation of conservation of the mass of the fluid phase. This term is asso- 
ciated with the three-dimensional quasi-turbulent fluid flux q. The same situation occurs 

in formulating the continuity equation for the average motion of an agitated compress- 

ible fluid. The equations of conservation of the momenta of the phases contain new 
terms describing the additional variation of the momentum occasioned by quasi-turbu- 
lence. These terms are due (a) to the pulsation pressure- Pcf) and P(P),and (b) to local 

variation of the fluid momentum transferred by the flux q. 
The second equations of (1.4) and (1, 7) are approximate. This is due to the fact that 

we omitted terms of higher than the second order in the primed quantities in computing 

the force G of (1.5) and in transforming the left side of the second equation of (1.6). 
If the quasi-turbulent quantities are relatively large, then this can result in substantial 
errors in the dynamic quantities being determined. However, this usually applies to par- 
ticle suspensions when the momentum of the gas, and therefore the forces GE and G, , 
are entirely negligible. The indicated error is then due solely to the form of G,in(1.5). 
It appears to be convenient in certain cases to replace the G, in (1.4) and (1.7) by one 
of the empirical relations for the viscous interaction force, i.e. by a relation of the form 

G, z P&K* (<p>) <u) 

Many formulas of this type have been accumulated through quasi-fluidization experi- 

ments. The function K’ ((p>) in the above expression describes the viscous resistance 
of the particle layer with allowance for the particle pulsations ; the function K (<P)) 

used above is the viscous resistance of the layer relative to the stationary “fixed” par- 
ticles. The difference between these two resistances is emphasized in most studies on 
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the hydraulics of quasi-fluidized layers. It is considered theoretically in [S], where the 
second correction term in the expression for G, in (1.5) is allowed for. However, the 
author of [S] uses this term to explain the smaIler value of the effective resistance of 
the quasi-fluidized layer as compared with the resistance of a stationary column packing 
of the same porosity ; we see from (1. 5). however, that when (ELK / d(p)a > 0 as is the 
case in all experiments, the indicated term represents the relative increase in the effec- 
tive hydraulic resistance. 

The pulsations of the dynamic variables in liquid suspensions are usually so small that 

Eqs. (1.4) and (1.7) are adequate approximations of reality. 
Complete determination of the above dynamic equations clearly requires us to find a 

method for calculating the mean-square values of the indicated quasi-turbulent varia- 
bles. Such a method is described below. 

2. Stochastic equations and cxpre8rions for the random procer- 
Be:. Using the results and conclusions of [l-3], we can make the following two assump- 
tions about the character of the quasi-turbulence under investigation : 

1) We assume that the time and space scales of variation of the dynamic variables 

are much larger than the corresponding scales of variation of the pulsation quantities 

associated with the quasi-turbulent motion. 
2) The time scale XY of significant change of the quantities of the type r#= a’b’- 

- (a’b’),where a’ and b’ denote any quasi-turbulent variables, is much smaller than 
the time scale T of variation in the correlation functions (a’b’). Therefore in analyz- 

ing processes whose characteristic time is of the order of t or higher (where t >> T but 
t < T ), we can assume that the quantities q’ are Markovian. By analogy with [9], we 
call the parameters z and T the “internal” and “external” quasi-turbulence time scales 

(see also the discussion in [l- 31). 

Using these assumptions, subtracting averaged equations (1.1) and (1.6) (i.e. the second 
equation of (1.4) and Eqs. (1.7)) from the corresponding unaveraged equations (1.1) and 
(1.6) and averaging the results over the interval t > z, we obtain the following sto- 
chastic equations for the random processes p’, pi, V’ and W’ under consideration, 

m f& = F’, ($+ w&p-(I-_(p))$= 0 

4(1- a)>) g + wg- ! v’= --f&++$&gp’+ 
(2.1) 

These equations are written out in the local coordinate system in which the mean 

velocity of the dispersed phase (w) is equal to zero ; in deriving (2.1) we assumed that 
the averaging of Fiover t > T, yields zero. 
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Here and in the following we neglect, for simplicity of notation, the angle brackets 
around the dynamic variables. 

Let us represent the random processes in terms of Fourier-Stieltjes integrals, Then we 
obtain the following equations for the spectral measures d&, dz,, dZv and dZ, of the 
random processes p’, at’, V’ and w’ : 

(~+uk)d&-(1-p)kc&,=O, A(o,k)dZ,-C(o, k)dZ,= 

= -kdZ, +x~~udZ,, - Al (0, k) dZ, + Cl (a, k) dZ, = 

=-(i-p)kdZ,-wk(kdZ,)--x g+p+&u~d.Z, t (2.3) 

A = i (1 + xE) 0 + (1 + i sign 0) xyy’ 10 ) ‘!z f xJ3K 

A, = xp [ihll + (1 + i sign 0) yy’I0 1 ‘/a +, /3Kl 

C =x Ii@ + (1 + i signw) yy’IoI”z + fiK1 

c, = x Ii (1 - p) (0 + uk) + %pw + (1 + i @no) yy’p 1 o 1”~ + 

+ PW + d21 

Scalar multiplication of the last two equations of (2.3) by the wave vector k followed 
by the use of the first equation of (2.3) yields 

k2dZ, + B (kdZ,) = - (D we + sc&) dZ, (2.4) 

B = i op, D = x [i’(l - p) (o + uk) f 2vk21 

The solution of this system is of the form 

kdZ,=~[(C+D)~~fx(g+P~u)k]dZ, 

k2dZ,=&[(AD+BC)aE+x(Ag+BB Fu)k]dZ, 

and the solution of (2.3) can be written as 

dZ,= ’ 
AC--‘4AC~ 

{[A,-t(l-~p)AlkdZ,+x[AjYk(,O_+~k’ + 

+g+d$u)-AA,PFu d4 I 1 

dZ, = AIC _! ACI {ICI + (I- P) Cl k d.G + 

+x[c.( vk ‘i”-+p”’ -j- g -/- pp -!$ u) - C,p $- u] dZ,} (2.5) 

Relations (2.4) and (2.5) enable us to express the spectral measures of all random 
processes under investigation here in terms of the spectral measure of the process p’. 
We see that these relations also fully define the Fourier aansforms of various correlation 
functions which are of interest in our theory, provided that the spectral density of the 
random process p’ is known. 

3. Dynamic: of the concentration fluctuation, in A di,perBe 
6ynte m. Let us now consider the dynamics of variation of the random field p’ (r, t). 
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This variation is obviously caused by chaotic pulsations of the particles taking part in 
the quasi-turbulent motion. In cases where the mass flux J (r, t) of the particles caused 

by such motions is relatively small and where the characteristic time TJassociated with 
its variation greatly exceeds the internal quasi-turbulence time scale ‘6, the variation of 
p (r, t) can be described, as we know, with aid of the standard diffusion equation (*) . 
The first of these assumptions generally represents the necessary condition of existence of 

some differential equation for p’ (r, t) , which becomes the well-known diffusion equa- 

tion when the second assumption is satisfied (e. g. see [ll]). In the argument that follows 

we consider the assumption of a small flux J (r, t) adequate, but surrender the assump- 
tion that it varies slowly. This is necessary, since some of the random processes intro- 
duced above are generally absent [lo] when the standard diffusion equation is used. 

We shall use the method developed in [ll] to allow for the subsequent term of expan- 
sion in r / TJ in the diffusion equation. When the distribution function f (w; r, t) 

exhibits a weak angular dependence, i.e. when the flux J is (as we assume) small, it can 
be written as 

f (w; r, t) -_&c*(w;r,t)+ & wJ* (w; r, t) (3.1) 
where c*uPdw and PWdw are the mass concentrations and the particle flux with its 
momentum lying in the range (mw, m (W + dw)). 

We shall carry out our analysis in a coordinate system attached to the mean motion 
of particles, neglecting the space and time dependences of the dynamic variables. Then, 

provided we disregard the “scattering” of the particles due to interactions with each 
other and to the fluctuations of the supporting stream, the following continuity equation 

[ll] holds for f (w; r, t): 
$rc w; r, t) = -w&f(w;r, t) (3.2) 

To allow for such a scattering we must introduce the total effective scattering cross sec- 
tion per unit volume r+ Q. For an ordinary gas nt represents the concentration of the 
molecular scattering centers, Q is the effective cross section of momentum tlansfer per 

scattering event, and the product (n, Q)-’ represents the mean free path of a particle 
between successive scattering events. The standard procedure now yields 

ac* 3 a(wJ*) 3 
War-G- ar w ~-- qQwJ* W (3.3) 

This equation differs from the analogous equation in [ll] only by the absence of terms 
containing the effective absorption cross section and the particle source function.. It con- 
tains two types of terms: terms invariant under changes of the direction of w and terms 
which change sign. This implies that’(3.3) is equivalent to the following two equations : 

C%* 3 a (wJ*) 1 
at=:--pWar, qg+J*z_Lz 

3ntQ ar (3.4) 

Neglecting the first term in the second equation, we readily obtain the standard diffu- 

sion equation. 
Equations (3.3) yield the following equation for the unknown c* : 

1 PC* ~_-- 
wntQ ate (3.5) 

*) Such a method of describing p’ (t, r) was used earlier in [lo], although only the dif- 
fusion resulting from the small-scale component of the pulsations of the suspended par- 
ticles was taken into account. 
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Let us now introduce the quantities c and J (whose meaning is obvious) and the ave- 
rage quantities 

W’C” (UT; P, t) dw, J (r, t) = ( w2J* (w; r, t) dw 

D = I/ Dij 11, Q, = &- +! , w* = (ww)‘I2 (3.6) 
We can now show as in [ll] that (3.5) is equivalent to the following generalized dif- 

fusion equation : ( * ) ac 
x=[&(D&$+&, trD=& (3.7) 

We can arrive at the same result by a fundamentally different method, namely by con- 
sidering directly the problem of random motion of a particle in three-dimensional space 
under the assumption that the displacement velocity of the particle is finite. A detailed 
analysis of the one-dimensional case of this problem is carried out in [12]. 

From (3.7) we can obtain a similar equation for the volume concentration,p of the par- 
ticles, or for its perturbation p’. The solutions of the last equation describe the regular 

degeneration of this perturbation. The random appearance of such a perturbation of con- 

centration caused due to fluctuations can be described by introducing a certain source 
function,which is Markovian with respect to time,into the right side of this equation. 

Such a function was already introduced in [l-3]. The resulting equation for the spectral 
measure of the process p’ discussed in Sect. 2 yields the following relation: 

-1 

(3.8) 

which closes the system of spectral equations obtained in Sect. 2. The spectral measure 
dz appearing in (3.8) shares with the quantity @ defined by the relation (dZ*dZ) = 
= hhdk the property of depending on the wave vector k but not on the frequency o. 

Relation (3.8) yields the following expression for the spectral density of the process F’: 

y,, p (0, k) = % p (k) [a2 + (Dkk - co2 $)“I-’ X 

x .$,,2+(Dkk-W2~)2]-1dw)-1, Yp,,dodk= (dZ,*dZ,) (3.9) 

in which the partial spectral density CD’p,p (k) defining the simultaneous correlation 
functions of the process p’is assumed to be known. The latter quantity can be represen- 

ted in one of the forms discussed in [l-3, lo]. 
Relation (3.9) together with Eqs. (2.4) and (2.5) makes it possible to compute all the 

spectral densities which are of interest. These in turn yield (by standard methods) the 

corresponding correlation functions. Relations thus obtained contain quantities W* and 

*) This corresponds to the case where the probability of the particle velocity change 
WI--, W, during a single scattering event depends only on the angle between the vectors 
w1 and w,.Tbe quantity n, Q is then a scalar. In the general case when the scattering is 
largely anisotropic in the sense that the above probability depends not only on the angle 
between w,and w,but also on their directions, we can introduce the tensor nlQ and the 
effective free-path length tensor h = (ntQ)-I. In this case the formula (3.6). for exam- 
ple,is replaced by the expression Dii = w *-‘hi]. %c%>. However, the tensor character of h 
is not essential in our case, since formula (3.6) is not used in its explicit form below. 
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Dij not known a priori. In computing them it is convenient to orient the coordinate 
axes in such a way, that the tensor <rui’wj’) is diagonal. We can see from (3.6) that the 
diffusion tensor D is also diagonal in such a coordinate system.Using(2.4),(2.5) and(3.9) 
we can readily find the quantity Y’wi,lDi,, representing the first invariant of the tensor 
spectral density of the process w’. This quantity depends on w* and on the eigenvalues 

Di of the tensor D as on parameters. We have the self-evident equation 

b 3 q,,i, wi do dk = ~“2 

defining w* as a function of Di, of the dynamic variables, and of the physical phase para- 
meters. In an entirely analogous manner we can express Dij as integrals of the correspond- 

ing components of Y,isy fo obtain equations for Di. Formulas (3.6) are very inconve- 
nient for computing Dij , since they contain nt Q , which is not known. It is therefore 

expedient to obtain the relations for Di by means of relations analogous to those for the 

turbulent diffusion coefficients. In this way we obtain 
M ._ 

s 5 dr ei-Ywi,wj do dk = Dij r;l; Di, i=j 
0 

The results obtained in this section enable us to complete our determination of the 
terms appearing in dynamic equations (1.4) and (1.7) as the result of quasi-turbulence. 
We see that these equations constitute an approximation corresponding to the Euler appro- 
ximation in classical hydromechanics. Indeed, when analyzing the random processes in 

Sect. 2, we omitted from all the stochastic equations terms of the order of T / TO or 
L I Lo, where L denotes the external quasi-turbulence space scale, and where T, and Lo 

are the characteristic dimensions of the average motion of a disperse system. The next 

approximation (analogous to the Navier-Stokes approximation in the hydrodynamics of 
a homogeneous fluid) could consist in admitting such terms directly into the above equa- 
tions. An alternative method consists in the purely phenomenological addition of terms 
representing the stresses due to the quasi-turbulent viscosity Cl.21 to the equations of 

conservation of momentum of the average motion of phases. For example, in the momen- 

tum equation for the dispersed phase these terms can be written as 

We also note that expressions (1.4) for the quasi-turbulent pressure of the dispersed 
phase and for the components of the tensor q (P) of the effective quasi-turbulent viscosity 
of this phase do not allow for instantaneous momentum transfer within the material of 
the suspended solid particles. Inclusion of the latter requires that PC@ and iCpJ obtained 
here be multiplied by a definite function of the average volume concentration of the 
disperse system [3]. 

4. Equation8 for the pulsation energy of the pharer. So far we 
have discussed only the “equilibrium” states of the quasi-turbulent motion, in the sense 

that we have assumed the dynamic variables to be independent of the time and coordi- 
nates and that the motions themselves were fully steadystate. In reality, when the dyna- 
mic parameters are variable (although we shall still assume that their derivatives are 
small) and when the stream is bounded (by walls, etc.), the resulting quasi-turbulence can 
deviate appreciably from the steady state. We distinguish two different relaxation 



416 1~. ,A. Buevich 

processes : (1) establishment of equilibrium at the level of individiual particles and of 
the fluid contained within their specific volumes, so that the local state of the system 

can be defined in terms of certain given mean quasi-turbulence characteristics ; (2) the 
relaxation of these mean values to their equilibrium values (obtained above) whose vari- 
ations follow those of the dynamic variables. Clearly, the scale of the first relaxation 

process coincides with the internal scale T and that of the second process with the exter- 
nal quasi-turbulence time scale $“. In the asymptotic case being considered here t > z. 
This obliges us to neglect the first process altogether and to consider only the states 
which are “relaxed” in the sense that they can be referred to as states “with local equi- 
librium”. 

We note that the first relaxation process is analogous to the establishment of local 
equilibrium in ordinary thermodynamic systems (e.g. to establishment of a state of mo- 
lecular chaos in the kinetic theory of gases) which we can generally describe in terms 

of the mean characteristics of the molecular motion, e. g. temperature of the system. 
The other relaxation process is analogous toathe process of smoothing out these mean 

values (e. g. of thermal conductivity). Moreover, ignoring the first process in gas-solid 
mixtures is exactly equivalent to postulating the presence of local thermodynamic equi- 
librium in the hydromechanics of a single-phase fluid. 

Obviously the quantity ( P’~) is, by definition, independent of the level of develop- 
ment of the quasi-turbulent motions. We assume that the statistical characteristics of 
the pressure pulsations p’ in the state of local equilibrium are identical with those in the 
corresponding equilibrium state. This means that the relaxation of p’ is due largely to 
the first relaxation process. The level of development of quasi-turbulence in the state 

of local equilibrium can be described with the aid of the quantities 
fii = <vi’s), I& = (u.‘i12) 

representing the energy of the pulsations of the fluid and of the dispersed phase in vari- 
ous directions. We consider these quantities as some unknown functions of t and r, which 
become fiioand 8i” in the equilibrium state. Obviously oioand &” are functions of the 
dynamic vLlrilbles. i.e. they depend on t and P implicitly only. 

Our task is to obtain specific equations for 6, and &. This generally requires the abi- 
lity to describe in detail the interaction processes of duration - 7 in the system. If 
these details are not available, then we must either make some additional assumptions 
about the character of this interaction, or else make some assumptions about the first 
relaxation process. A very simple approximate model of this type can be based on the 

assumption that the above relaxation process leads to a smoothing of the velocities of 
the quasi-turbulent motion in various directions such that flier Bi behave exactly as 6,” 
and @‘and that the phase characteristics of the random processes coincide with those 

in the corresponding equilibrium state. We then have the following relations: 

61 = 6 (+:/So), 0, = 0 (Oi” / 6’), 6 = Z2i6.i. 8 = Si@i 

6 
(V,j’Vj’) = 6” ( Vi’Vj’)“y @‘Vi’) = (&y <p’q’)O 

(Wi’U’j’) = 0 (Wi’Wj’)“y 
0” 

(p’q’) = (2_ j’i’ (p’q’)O 

(4-l) 
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Here and below the superscript ’ denotes the quantities in the equilibrium state. 

For simplicity we shall consider only the equations for 6 and 8 , neglecting the force 
Fg’ in (2.2) ( l ). From the second equation of (2.2) we obtain 

Multiplying the second and third equations of (2.2) by w/and vi’resepectively, applying 

(4. A), and averaging. we obtain 

For example, let us consider (VI%“> and (w’w’). using (4.1) we obtain 

But Eqs. (2.2) or (4.3) written out for the equilibrium state when the dynamic 
have constant values, yield 

(4.4) 

variables 

which enable us to transform (4.4). The same operation can readiIy be carried out for the 
quantities (v’V’) and (w’v’). 

*) If the force F,’ must be retained (e. g. for large particles), then the following time 
correlation functions ( v’ (t + r)v’(t)> (V’ (t + @w’(t)>, W’ (t + r)w’lW 

occur in the equations for 6 and 0 In this case we must either construct the equations 
for these correlation functions by means of the familiar rules, or we must assume as in 

(4. l), that 
<v’(t + r&‘(t)> = (6 / 6”) <v’(t + z)v’ (t))” 

~‘0 + qwf(t), = (68 / 6~8 )‘/2 (f(t + z)wp),o 

w(t + ww = (e i e”) cwyt -f- z)wtft)p 
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As a result, we obtain the following equations from (4.3) : 

which for suspensions of particles in gases reduce to a single equation for 8 (X + 0, 

4 # 0) (~+w~p 5q1-(~)2](I/e"-I/e) (4.7) 

Unlike (4.3). Eqs. (4.6) and (4.7) are written out in the laboratory coordinate system 
where w # 0. Together with dynamic equations (1.4) and (1.7) they fully define the 
state of the system. 

Our energy equations are also in the Euler approximation. To obtain the next appro- 

ximation we must take into account: (1) the increase in the quasi-turbulent energy due 

to dissipation of the energy of the average motion through pulsations ; (2) the transfer 
of pulsation energy by the pulsations themselves. These factors can be allowed for phe- 
nomenologically by introducing the effective quasi-turbulent viscosity tensors and the 
effective coefficients of quasi-turbulent phase energy transfer. For example, R, in the 

second equation of (4.6) is here replaced by 

Using the dynamic equations together with the quasi-turbulent energy transfer equa- 

tions, we can readily obtain the equations for the energy of the mean phase motion of a 
disperse system. 
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The nonaxisymmetric problem of elasticity theory for circular cylindrical shells loaded 
along the endface surface Fz is considered. By using the method of trigonometric series 

expansions, homogeneous solutions of closed (I, : z - & 2) and open (F, : g = -!- Cpo) 
shells are studied as their thickness decreases. 

It is proved that the state of stress of a closed shell includes four parts : (1) an elemen- 
tary state of stress penetrating into the shell without attenuation, (2) a slowly attenuated 

principal state of stress, (3) a rapidly attenuating state of stress (edge effect of shells), 

(4) a boundary lay& type of state of stress. 
In the case of an open cylindrical shell subjected to a periodic loading with period I,, 

there are states of stress of types (1). (3) and (4). The rate of attenuation of the edge 
effects hence depend essentially on the number of the term of the trigonometric series 

as well as on the quantity 1,. In both cases asymptotic expansions are presented of the 
components of the states of stress and strain. 

On the basis of the exact solution of the three-dimensional problem, a refined applied 
theory is given for a circular cylindrical shell, which is intended to reduce the stress from 

the endface surface Fz. Applied theories reducing the stresses from the cylindrical por- 

tions of the shell boundary were considered earlier in [l]. 

1. Construction of homogeneou: rolutionr. Let us consider the arbit- 
rary strain of an elastic isotropic shell bounded by coaxial circular cylinders r1 of radii 
R, and R, (RI < R,) and an endface surface I’s. Let us assume that the stress result- 
ants applied to the boundary r2 form a system statically equivalent to zero, and the 
boundary r1 is stress-free. As the initial relationships let us take expressions for the 


